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Abstract. The technique of Darboux (supersymmetry) transformations is
applied to periodic potentials. For the irreducible second order transforma-
tions the intermediate potentials can have poles while the final one is regular.
A new kind of symmetry is detected, namely, translational invariance with
respect to Darboux transformations. The necessary and sufficient conditions
for a potential to have this invariance are formulated. New periodic and non-
periodic exactly solvable potentials are found.

1. Introduction

A nice algebraic method of quantum mechanics leads to new classes of exactly
solvable Schrödinger equations. The method is known under three different names:
supersymmetric quantum mechanics, factorization method, and Darboux transfor-
mation. The first name became popular after Witten’s paper [1] proposing a sim-
ple supersymmetric model in quantum field theory. The second method is due to
Schrödinger [2]. The third name was born in the soliton theory and it is related to
the Darboux paper published in 1882 [3]. The Darboux approach originated as well
the general techniques of intertwining operators. The basic notions of the intertwin-
ing techniques are very simple and they were discovered and rediscovered by many
authors. Probably the first deep investigation of this method was made by Delsart
[4]

2. Darboux transformations and supersymmetry
(short review)

Suppose we start with a certain initial Schrödinger equation

h0ψE = EψE , h0 = −∂2
x + V0(x), x ∈ [a, b] (1)

whose solutions are known for some values of the parameter E. This parameter, in
general, may be complex but for simplicity we will suppose that it is real. To solve
another Schrödinger equation

h1ϕE = EϕE, h1 = −∂2
x + V1(x), x ∈ [a, b] (2)
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it is convenient to use an intertwining operator which will be denoted L. Its defining
identity is

h1L = Lh0 (3)

It is clear from (3) that if ψE is a solution of (1) then ϕE = LψE is a solution to (2).
It is well-known from the inverse scattering method that the intertwining oper-

ators L exist for wide families of Hamiltonians h0 and h1, but in general they are
complicated and not easy to apply. To overcome this difficulty one imposes some
restrictions on L. Below, we shall look for L in form of linear differential operators.
If L is of the first order, one arrives at the well known formulae of Darboux

L = ∂x − u
′(x)/u(x), V1 = V0 − 2(ln u)′′ (4)

where u is an eigenfunction of the initial Hamiltonian h0

h0u = αu (5)

In this case, the transformation operator and the new potential are completely
defined by the function u, the reason why one calls u the transformation function.
If one wants to assure that the transformation (4) does not introduce singularities,
the sole condition imposed on u is that it should be nodeless solution to Eq.(5).

For the differential operators A,B, . . . it is convenient to use the formal (Laplace)
conjugation operation +, defined by the relations ∂+

x = −∂x, (aAB)+ = aB+A+,
a ∈ C. In particular, L+ = −∂x − u′(x)/u(x), h+

0 = h0 and h+
1 = h1. Applying

the formal conjugation + to both sides of the intertwining relation (3) one obtains
a similar relation for L+

h0L
+ = L+h1 (6)

This means that L+ leads from the solutions of the Schrödinger equation with the
Hamiltonian h1 to the solutions of a the same equation with the Hamiltonian h0 i.e.,
in a sense it acts in an inverse direction than L (though it is not inverse to L since
the product of L and L+ is not the identity operator). Indeed, it is easy to show
that L together with L+ yield the following factorizations

L+L = h0 − α, LL+ = h1 − α, (7)

where α (present as well in (5)) is called the factorization constant.
Let us introduce now the matrix Hamiltonian (superhamiltonian)

H =

(

h0 0
0 h1

)

and two nilpotent matrix operators (supercharges)

Q =

(

0 0
L 0

)

, Q+ =

(

0 L+

0 0

)

(8)
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It is easy to see that the intertwining relations can be viewed as the commuta-
tion relations between the supercharges and the superhamiltonian. The factorized
expressions (7) leads to an anticommuting relation for the supercharges

{

Q,Q+
}

= H− αI, [Q,H] = 0, [Q+,H] = 0 (9)

This means that the operators H, Q and Q+ close to a simple superalgebra, i.e.,
the algebraic structure underlying the traditional Darboux transformation is the
supersymmetry.

Despite that the operators L and L+ have nontrivial kernels, Lu = 0, L+u−1 = 0,
they can be used to establish the mapping between the spaces of solutions of the
initial and transformed Schrödinger’s equations. Denote by T0E the following 2-
dimensional space T0E = ker(h0 − E) and by T1E the space T1E = ker(h1 − E).
When E 6= α the operator L maps T0E onto T1E , L+ yields the inverse mapping and
the correspondence is one-to-one.

When E = α the space T0E is spanned by u and ũ

ũ = u

∫ x

u−2dx ∈ T0E (10)

and the space T1E is spanned by v = 1/u and ṽ

ṽ = u−1

∫ x

u2dx ∈ T1E (11)

It is easy to see that Lũ = u−1 ∈ T1E and L+ṽ = u. It follows that for E = α one
can define a linear mapping T0E ←→ T1E by: u←→ ṽ, ũ←→ v.

The above correspondence is very useful for finding all square integrable solutions
of the transformed equation if the corresponding solutions for the initial equation
are known. It is easy to show that when the transformation function u is nodeless
and E 6= α the function ϕE = LψE is square integrable if and only if ψE is square
integrable. To find all square integrable solutions of the transformed equation it is
then sufficient to analyze the functions v and ṽ. Note that three different cases are
possible.
Case 1:

α = E0 and u ∈ L2(a, b) =⇒ v /∈ L2(a, b), ṽ /∈ L2(a, b)

E0 ∈ Sph0, E0 /∈ Sph1, Ek ∈ Sph0 and Ek ∈ Sph1, k = 1, 2, . . .

The Hamiltonian h0 has an additional discrete spectrum level with respect to h1.
Case 2:

α < E0 and v = u−1 ∈ L2(a, b) =⇒ E = α /∈ Sph0, E = α ∈ Sph1 (12)

Ek ∈ Sph0 and Ek ∈ Sph1, k = 0, 1, 2, . . .
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The Hamiltonian h1 has an additional discrete spectrum level with respect to h0.
Case 3:

α < E0 and v = u−1 /∈ L2(a, b), ṽ /∈ L2(a, b) =⇒ (13)

Ek ∈ Sph0 and Ek ∈ Sph1, k = 0, 1, 2, . . .

Both h0 and h1 have alike discrete spectrum i.e. they are strictly isospectral.
When h1 and h0 are isospectral one says that the supersymmetry is broken and

when their spectra are different the supersymmetry is exact.
When the transformation operator is of higher order, we say that it generates a

higher order Darboux transformation. It is possible to show that any such operator
may be expressed as a chain of first order operators L(N) = LNLN−1 . . . L1, creating
a chain of exactly solvable Hamiltonians h0 → h1 → . . . → hN . The Hamiltonian
hN may be either isospectral with h0 or their spectra may differ by a finite number
of levels. Similarly to the first order case, the Nth order operator is defined with
the help of N solutions uk, k = 1, . . . , N of the initial equation

VN = V0 − 2[lnW (u1, . . . , uN)]′′, h0uk = αkuk (14)

where W (u1, . . . , uN) is the Wronskian for the system of solutions u1, . . . , uN . The
Nth order operators L(N) and (L(N))+ factorize the polynomials build up of the
Hamiltonians h0 and hN

(L(N))+L(N) = (h0 − α1)(h0 − α2) . . . (h0 − αN)

L(N)(L(N))+ = (h1 − α1)(h1 − α2) . . . (h1 − αN)

the property which leads to the higher order superalgebra
{

Q,Q+
}

= (H− α1I)(H− α2I) . . . (H− αNI)

meaning that the underlying algebraic structure for a chain of transformations is
the parasupersymmetry.

A very interesting feature of higher order transformations is that some interme-
diate Hamiltonians may be deprived of physical meaning while the final Hamiltonian
is good from the physical point of view. In this case the Nth order transformation is
called irreducible (reducible otherwise). There exist two kinds of irreducible transfor-
mations. The first type appears when there are complex intermediate factorization
energies. In this case some transformation functions are complex-valued. This leads
to intermediate complex potentials and the corresponding Hamiltonians cannot be
defined as self-adjoint operators. The second case corresponds to the transforma-
tion functions which have zeros, and the intermediate Hamiltonians include singular
potentials. In particular, a case when the transformation functions are adjacent
discrete spectrum eigenfunctions was first considered by Krein [5]. The general case
has recently been analyzed in [6].

The supersymmetric quantum models constructed with the help of such irre-
ducible transformations have new interesting properties. In particular, it is possible
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to construct superhamiltonians with degenerate ground state (a characteristic of the
broken supersymmetry) but some excited states are non-degenerate (which is inher-
ent to exact supersymmetry). Hence, such models have properties of both exact and
broken supersymmetry at once.

3. Periodic potentials

Let the initial potential be periodic V0(x+T ) = V0(x). It is well-known that the
Schrödinger equation with a periodic potential always has pseudoperiodic solutions
(see [7], p.31), called also Bloch functions [8]

ψE(x) = βψE(x+ T ) , β = const ∈ C (15)

The spectrum of the Schrödinger equation represents a sequence of allowed and
forbidden bands. For forbidden E-values β is real and positive.

Let us denote the band edges by

E0′ < E1 ≤ E1′ < E2 ≤ E2′ < . . . < Ej ≤ Ej′ < . . .

The intervals [Ej ′ , Ej+1], j = 0, 1, . . . belong to the spectrum of h0. The functions
ψj(x) and ψj ′(x) have the same number of nodes j.

It is clear that to get a Darboux transformed potential which is periodic one
has to use the Bloch functions. It is not difficult to show that when α ≤ E0 ′ any
Bloch function is nodeless and thus the transformed potential has exactly the same
band structure as the initial one. We conclude that in this case the band structure
is invariant with respect to Darboux transformations, i.e. the transformed and the
initial potentials are always isospectral. It is not possible either to delete or create
energy bands for a periodic potential with the help of the Darboux transformations
generated by the Bloch functions and the corresponding supersymmetry is broken.

When the factorization constant is greater then E0 ′ the transformation function
has always nodes. Therefore the first order transformed potential is not regular in
R (it has poles). Nevertheless, it is possible to show that when two factorization
constants are taken in the same forbidden band, the corresponding Bloch functions
lead to a nodeless Wronskian. This means that the second order transformed po-
tential is regular on the whole real line. We thus get an irreducible second order
Darboux transformation defining an irreducible second order supersymmetry.

4. New exactly solvable periodic potentials

To examine the consequencies, we have first of all applied our method to the
Lamé potential

V (x) = n(n + 1)m sn2(x|m), n ∈ N, 0 < m < 1 (16)

For n = 1 the Bloch functions are specially simple to express for any E in terms of
elliptic functions (see e.g. [9]). Fig. 1 shows the initial potential (a) together with the
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transformed one (b). Note a surprising result which could not be easily guessed from
the formula (4). The transformed potential looks like a displaced copy of the initial
one (at least up to our computer accuracy). For any non-singular first and second
order Bloch families of Darboux transformations we have observed this phenomenon
with different values of the displacement parameter. We will show further that
this effect is exact. We call it translational invariance with respect to Darboux
transformation [10]. A particular case of this invariance when the displacement
is equal to half the period was already observed in [11, 12].

0 T 2T

0.4

0

-0.4

���� ����

Fig. 1: Translational effect of the 2-nd order Darboux transformation. (a) The initial

Lamé potential with n = 1 and m = 0.5; (b) The 2-susy equivalent. The factorization

energies belong to the first energy gap (E1, E1′), the displacement d = 0.747 6= T/2.

For other n the situation is different. For n = 2 our results are shown in the
next figure below:

Fig. 2: A non-trivial result of the periodicity preserving second order Darboux transfor-

mations. (a) The original Lamé potentials, (b,c,d) the Darboux deformed versions.

Our following example is very similar to the well-known Kronig-Penney poten-
tial but it is easier to investigate since in contrast with the Kronig-Penney case
our potential is continuous. We have considered the well-known soliton potentials
restricted to a bounded subinterval of the real line and continued beyond by peri-
odicity. An advantage of the so defined potentials is that both linearly independent
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solutions of the Schrödinger equation are given by elementary functions for any
value of E. As a result one can get the condition for the band edges in form of a
transcendental equation which may be easily solved numerically [13].

The Fig.3 shows the initial, periodically continued one-soliton potential together
with its 2-nd order Darboux transformed versions. While the initial potential is
not smooth at its maxima, the transformed ones have smooth maxima which are,
however, displaced. The points of non differentiability, however, remain fixed at
±a+nT . We see from these graphics that the transformed potentials tend to become
displaced copies of the initial one but the “invariance” here is only approximate (see
[10]).

-a 0  a 2a 3a

0

-0.5

-1

-1.5

���� ���� ����

Fig. 3: Second order Darboux transformations of the periodically continued one soliton

potential. (a) The initial potential; (b-c) The modified forms after using (14) with u1, u2

chosen to be the pairs of Bloch functions for α1 = −10 and α2 = −2.

The following Fig.4 shows our Darboux operation for a “piece-wise” two-soliton
potential which by construction is smooth up to the first derivative at the maxima.
The invariance here is again approximate but its features cannot be seen by the
naked eye; the displacement looks as perfect as for the n = 1 Lamé potential.

   -a 0    a   2a   3a

0

-0.65

-1.3
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Fig. 4: Darboux operations on a periodically continued two soliton potential. (a) The

initial potential; (b) the result of a 2-order Darboux transformation due to the pair of

Bloch functions for α1 = −0.6, α2 = −0.0007. Notice a very good approximation to a

finite displacement.

This example shows that the numerical experiments, while useful, can be mis-
leading. To get a correct answer it is necessary to have an exact criterion whether
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a potential does or does not admit a supersymmetric displacement.

5. Translational invariance and potentials
with periodicity defects

In fact, we can report the necessary and sufficient conditions for a potential to
admit a Darboux displecement [14].

Theorem. The Darboux transformation (4) can induce the finite displacement
V (x)→ V (x+ d) if and only if the following quantity

α =
1

2
V (x) +

1

2
V (x+ d)−

1

4

[

V ′(x) + V ′(x+ d)

V (x)− V (x+ d)

]2

(17)

is independent of x. Under this condition the potential can be as well displaced
by −d. If this occurs, α is the factorization constant and the transformation
function is defined by

[ln u(x)]′ = ±

[

1

2
V (x) +

1

2
V (x+ d)− α

]1/2

(18)

where ± signs correspond to d and to −d.

It is not difficult to check that the Lamé potential with n = 1 satisfies the
equation (17) for continuous values of d. This justifies our conclusion obtained from
numerical experiments in the precedent section.

Note that our last theorem is not restricted to the periodic potentials. It is
possible to show that the one-soliton potential when defined on the entire real line
satisfies this equation too. The two-soliton potential does not. This might mean
that the translation invariance obtained for periodically continued soliton potentials
is not exact but it is only approximate. In the case of one-soliton potential the
condition (17) is violated at the points x = ±a + nT .

Let us suppose now that the family of possible 1-st order displacements contains
a triple d1, d2, d3 such that d1 + d2 + d3 = 0. Then the result of three corresponding
Darboux transformations is an exact copy of the initial Hamiltonian. This means
that the third order Darboux transformation operator L(d) = L3(d3)L2(d2)L1(d1)
is the symmetry operator for the initial Hamiltonian. It is known that the only
potentials which admits a third order differential symmetry operator are expressed
in terms of the Weierstrass elliptic functions

V (z) = 2℘(z − z0) + const

This result together with our theorem means that when the domain of possible
displacements is sufficiently large only the Weierstrass functions admit translation
invariance with respect to Darboux transformation. The Lamé and one-soliton po-
tentials are precisely the special cases of Weierstrass potential.
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When the potential is the Weierstrass function, it is possible to express the
factorization constant as a function of the displacement parameter α(d) = −℘(d).
Our necessary and sufficient condition becomes now the well known addition theorem
for the Weierstrass function

℘(u) + ℘(v) + ℘(u+ v) =
1

4

[

℘′(u)− ℘′(v)

℘(u)− ℘(v)

]

implying that any function satisfying this addition law is the Weierstrass function
(or its degenerate form such as 1-soliton potential). This statement is a particular
case of the known Weierstrass theorem (see e.g. [9]).

Starting from the expression (18) one can get the known formula for Bloch so-
lutions of the Schrödinger equation with the Weierstrass potential

u(x) =
σ(x+ ω′ + d)

σ(x+ ω′)
e−xζ(d) (19)

Here sigma and zeta are the non-elliptic Weierstrass functions, ω′ is the imaginary
half-period of ℘.

It is interesting that all formulae are valid not only for the real d’s but for a
complex d of particular form: d = d0 + ω′ (d0 ∈ R). This permits one to get Bloch
functions for all real values of the spectral parameter E and to obtain the known
expressions for the band edges

E0′ = −℘(ω) = e1, E1 = −℘(ω + ω′) = e2, E1′ = −℘(ω′) = e3

where ω is the real half-period of the Weierstrass function ℘. Note as well that
by changing the sign of d in (19) one gets another linearly independent solution of
the Schrödinger equation at the same value of the energy E, and hence, a general
solution is now to our disposal.

Once we know the general solution of the Schrödinger equation with the Weier-
strass potential for any E, we can use it in order to implement the Darboux transfor-
mations. In such a way we shall obtain new non-periodic potentials whose spectrum
will consist of the band spectrum of the initial potential and a finite number of
bound states encrusted in the forbidden energy bands. The Fig.5 shows some exam-
ples of those potentials which can describe periodicity defects inserted in a periodic
lattice.
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Fig. 5: Non-periodic deformations (b,c,d) of Lam’e (a) potentials
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