
CHAP. l3] IDENTICAL PARTICLES

Supplementary Problems

13.13. Prove that the Pauli exclusion princip1e does not hold for bosons.

13.14. Show explicitly that the Slater determinant for three fermions is antisymmetric.

13.15. Show that any function on the realline is a sum of a symmetric and antisyrnrnetric functions.

f(x) +fe-x) f(x) -fe-x)
Ans. f(x) = 2 + 2

13.16. What happens to the Slater determinant if there is a linear dependency between 1<1/1) .. ·1<1>.i.) ?

Ans. It vanishes.o Three particles are confined within the potential

{
O O~x~a and O~y~b

V(x, y) = 00 otherwise

Find the ground state of the systern when the particles are bosons.

Ans. IlJIoCrpr2, r3) = 1$¡,¡(r¡)<p¡,¡Cr2)$¡,¡(r3), where $"x'''}x, y) = ~sin( nx:x)sin( ny;y).
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(13.17.1)

13.18. Refer toProblern 13.14 and find the ground state of the systern when the particles are "spinless" fermions. (That is,
use PauJi's exclusion principIe, but neglect the additional degree of spin.)

1<PIlCr¡) 1$¡2(r ¡) 1$21(r¡)
1"

Ans. IlJIoCr¡,r2, r3) = J3i. 1<P¡¡(r2) 1$I2(r0) 1<P2¡Cr2)

1$II(r3) 1<P12(r3) 1$2¡(r3)

13.19. Repeat to Problerns 13.14 and 13.15, but now do not neglect the spin.

1$7¡Cr¡) 1$~¡Cr¡1) 1$~2Cr¡)
1

Ans. I%(rp r2' r3) = J3i. 1$7¡(r0) 1$;¡(r2) 1$;ir2) and three additional possible states by substituting

1$7¡(r3) 1<p;¡Cr3) 1$;2(r3)

13.20. Repeat Problern 13.10, but this time solve for two bosoos.

Ans. 1<1>(1,2,r¡, r2) = I$¡(r¡) ;S¡)1<P2(r2) ;S2) + 1$¡(r2) ;S¡)1$2(r1) ;S2)

-11 <p¡(r ¡) 1
2

1 $ir 2) 1
2

+ 1 <p)(r2) 1
2

1 $2(r 1) 1
2

SI *- S2
Ptwopar(r1, r0 - 1 12. <p)(r 1) <P2(r2) + $¡(r 2H2 (r ¡) SI = S2



330 IDENTICAL PARTICLES [CHAP. 17

PROBLEMS.

~ Two particles of mass m are placed in a rectangular box of sides a ~
b Win the lowest energy state of the system compatible with the conditions
below. Assuming that the particles interact with each other according to the
potential V = Vo B(T1 - T2), use first-order perturbation th~ory to calculate
the energy of the system under the following conditions: ta) Particles not
identical. (b) Identical particles of spin zero. (e) Identical particles of spin
one-half with spins parallel.

17-2. Calculate the cross section, including its spin dependence, for the
scattering of thermal neutrons by neutrons. Assume that the interaction be-
tween neutrons is spin-independent and is of the form oí a potential well of
radius ro and depth Vo.

17-3. (a) 8tate the Pauli exclusion principIe and discuss its application.
(b) 8how in detail how with its aid one can order the elements in the periodic
table accordingto their chemical properties. (e) Why do the rare-earth elements
have similar chemical properties? -(d) Why are the alkali metals similar?

17-4. Discuss the energy-level structure oí the helium atom.
17-5. Calculate the differential scattering cross section for the mutual scat-

tering of two identical hard spheres with spin one-half and radius a« A.
I~ the effects of S-, P-, and D-waves but neglect higher partial waves.

~ (a) Show that the spin-exchange operator can be written as

812 = ~2 [81+82:""+ 81-82+ + (281.82%+ ih2
)].

[Hint: Show that the first term in the brackets changes the spin state - +
into +- and gives zero for the remaining three spin states of the form oí
Eq. (17-12). What operations do the remaining two terms in the brackets per-
form?] (b) Show that the above spin-exchange operator can be expressed as

(e) 8how that it can also be written as

1 2 2
812 = h2 (8 - h ).



EXERCISES

Complement Dx,v

EXERCISES

(,) Let ho be the Hamiltonian of a particle. Assume that the operator h¿ acts
\ri(ly on the orbital variables and has three equidistant levels of energies O, ñwo,
2ñwo (where Wo is a real positive constant) which are non-degenerate in the orbiuil
state space $r (in the total state space, the degeneracy of each of these levels is equal
to 2s + 1, where s is the spin of the particle). From the point of view of the orbital
variables, we are concerned only with the subspace of $r spanned by the three
corresponding eigenstates of ho'

a. Consider a system of three independent electrons whose Hamiltonian can
be written:

H = ho(I) + ho(2) + ho(3)

Find the energy levels of H and their degrees of degeneracy.
b. Same question for a system of three identical bosons of spin O.o Consider a system of two identical bosons of spin s = 1 placed in the same

central potential V(r). What are the spectral terms (cf complement Bx1v, §2-b)
corresponding to the lS2, ls2p, 2p2 configurations?

o Consider the state space of an electron, spanned by the two vectors I <PPx )
and I <Pp > which represent two atomic orbitals, Px and Py' of wave functions <ppJr)
and <Pp/r) (cf complement EVII' ~2-b):

<ppJr) = xf(r) = sin8cos<prf(r)
<pp,(r) = yf(r) = sin 8 sin <prf(r)

a. Write, in terms of I <PPx ) and I «; ), the state I <Pp, ) which represents
the P« orbital pointing in the direction of the xOy plane which makes an angle a
with Ox.

b. Consider two electrons whose spins are both inthe I + > state, the eigen-
state of Sz of eigenvalue + ñ12.

Write the normalized state vector I tf¡ ) which represents the system of two
electrons, one of which is in the state I <Ppx) and the other, in the state I <PPy ).

c. Same question, with one of the electrons in the state I <pP. ) and the other
one in the state I <Pp ), where a and f3 are two arbitrary angles. Show that the state
vector I tf¡ ) obtaine~ is the same.

d. The system is in the state I tf¡ ) of question b. Calculate the probability
density t?l(r, 8, <P; r', 8', <p') of finding one electron at (r, 8, <p) and the other one at
(r ', 8', <p'). Show that the electronic density p(r, 8, <p), [the probability density of
finding any electron at (r, 8, <p)] is symmetrical with respect to revolution about the
Oz axis. Determine the probability density of having <P - <P' =;; <Po, where <Po is
given. Discuss the variation of this probability density with respect to <Po'
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COMPLEMENT Dxov

o Collision between two identical particles

The notation used is that of §D-2-a-~ of chapter XIV.

a. Consider two particles, (1) and (2), with the same mass m, assumed for the
moment to ha ve no spin and to be distinguishable. These two particles interact
through a potential V(r) which depends only on the distance between them, r.
At the initial time lo, the system is in the state 11 : pez; 2 : - pez ). Let U(t, lo) be
the evolution operator of the system. The probability amplitude of finding it in the
state 11 : pn; 2 : - pn ) at time 11 is:

F(n) = < 1 : pn; 2 : - pn 1 U(t1, lo) 11 : pez; 2 : - pez)

Let e and <p be the polar angles of the unit vector n in a system of orthonormal
axes Oxyz. Show that F(n) does not depend on <p. Ca1culate in terms of F(n) the
probability of finding any one of the particles (without specifying which one) with
the momentum pn and the other one with the momentum - pn. What happens
to thisprobability if e is changed to n-e?

b. Consider the same problem [with the same spin-independent interaction
potential V(r)], but now with two identical particles, one of which is initially in the
sta te 1 pez, ms ), and the other, in the state 1 - pez, m; ) (the quantum numbers ms
and m; refer to the eigenvalues m;h and m;ñofthe spin component along Oz). Assume
.that m. =1 m'; Express in termsof F(n) the probability of finding, at time tI> one
particle with momentumpn and spin m. and the other one with momentum - pn and
spin m;. If the spins are not measured, what is the probability of finding one
particle with momentum pn and the other one with momentum '- pn? What happens
to these probabilities when e is changed to ti - e} . .

c. Treat problem b fo~ the case ms = m'; In particular, examine the e = n/2
direction, distinguishing between two possibilities, depending on· whether the
particles are bosons or fermions. Show that, again, the scattering probability is the
same in the e and n-e directions.

5. Collision between two identical unpolarized particles

Consider two identical particles, of spin s, which collide. Assume that their
initial spin states are not known: each of the two particles has the sáme probability
of being in the 2s + l possible orthogonal spin states. Show that, with the notation
of the preceding exercise, the pro bability of observing scattering in the n direction is :

e .
IF(n)12 + IF( - n)12 + 2s + 1 [F*(n)F( - n) + c.c.]

(e = + 1 for bosons, - 1 for ferrnions).
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'." COMPLEMENT OXIV

b. The two particles under consideration are now, identical fermions of
spin 1/2 (electrons or protons).

cc In the state space of the system, we first use the { I rG, r; S, M) } basis of
common eigenstates of RG, R, S2 and Sz, where S = S1 + S2 is the total spin of
the system (the kets I S, M ) of the spin state space were determined in §B of
chapter X). Show that:

P21IrG,r;S,M) = (- I)S+1IrG' - r;S,M)

[3. We now go to the { I PG; En' 1,m; S, M ) } basis of common eigenstates
ofPG, n; L2, t.; S2 and s;

As in question a - [3, show that:

P 21 I PG; En, 1, m; S, M) = (- l)S + 1(- 1)/ I PG; En, 1, m; S, M )

y. Derive the values of 1 allowed by the symmetrization postulate for each
of the values of S (triplet and singlet).

c. (more difficult)
Recán that the total scattering cross section in the center of mass system of two
distinguishable particles interacting through the potential V(r) can be written:

4n 00

(J = - ¿ (21 + Ilsin? ¿¡/
k2 /=0 '

,
where the ¿¡/ are the phase shifts associated with V(r) [el chap. VIII, formula (e-58)].

(l. What happens if the measurement device is equally sensitive to both partic1es
(the two partic1es have the same mass)?

[3. Show that, in the case envisaged in question a, the expression for (J

becomes:

(J = 8n ¿ (21 + 1) sin ' ¿¡/
k2 leven

y. For twounpolarized identical fermions ofspin 1/2 (thecase ofquestion b),
prove that:

(J = 2: { ¿ (21 + 1) sin? ¿¡/ + 3 ¿ (21 + 1) sin ' s, }
k leven lodd

Position probability densities
tor a system of two identical particles

Let I <P ) and l z > be two normalizedorthogonal states belonging to the
orbital state space gr of an electron, and let I + > and I - > be the two eigenvectors,
in the spin state space 8s' of the Sz component of its spin.

1450



EXERCISES

a. Consider a system of two electrons, one in.the state I qy, + ).and the other,
in the state l x. - ). Let PII(r, r')d3rd3r' be the probability of finding one of them
in a volume d3r centered at point r, and the other in a volume d+r' centered at r '
(two-particle densityfunction). Similarly, let PI(r)d3r be the probability of finding
one of the electrons in a volume d3r centered at point r (one.particule density
function). Show that:

p/I(r, r/) = I qy(r)12 Ix(r/)12 + Iqy(r'W Ix(rW
. p,(r) = Iqy(rW + Ix(rW

Show that these expressions remain valid even ifl qy) and Ix> are not
orthogonal in 6r.

Calculate the integrals over al! space of p,(r) and PII(r, r'). Are they equal to 1 ?
Compare these results with those which would be obtained for a system of

two distinguishable particles (both spin 1/2), one in the state I ip, + ) and the other
in the state I X,- ); the device which measures their positions is assumed to be
unable to distinguish between the two particles.

h. Now as sume that one electro n is in the state I tp ; + ) and the other one,
in the state l r. + ). Show that we then have:

PII(r, r) = Iqy(r)x(r/) - qy(r')x(rW
PI(r) = Iqy(r)12 + Ix(r)12

Calculate the integrals over al! space of PI(r) and PI!(r, r ").
What happens to PI and PII if I qy ) and l z > are no longer orthogonal in 6r?

c. Same questions for two identical bosons, either in the same spin state or in
two orthogonaI spin states.

8. The aim of this exercise is to demonstrate the fol!owing point : once the state
vector of a system of N identical bosons (or fermions) has been suitably symmetrized
(or antisymmetrized ), it is not indispensable, in order to calculate the pro bability
of any measurement result, to perform another symmetrization (or antisymmetri-
zation) of the kets associated with the measurement. More precisely, provided
that the state vector belongs to tff s (or tff A)' the physical predictions can be calculated
as if we were confronted with a systemof distinguishable particles studied by
imperfect measurement devices unable to distinguish between them.

Let II{!) be the state vector of a system of N identical bosoris (al! of the
fol!owing reasoning is equal!y valid for fermions). We have:

(1 )

1.

a. Let l z > be the normalized physical ket associated with a measurement
in which the N bosons are found to be in the different and orthonormal individual
states I ua), I up), ... , I uv)·Show that:

l z > = 51 S 11 : ua; ;¿ : up.; ... ; N : Uv ) (2)
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