Complement Exili

EXERCISES

Consider a one-dimensional harmonic oscillator of mass m, angular frequency ω_0 and charge q. Let $|\varphi_n\rangle$ and $E_n=(n+1/2)\hbar\omega_0$ be the eigenstates and eigenvalues of its Hamiltonian H_0 .

For t < 0, the oscillator is in the ground state $| \varphi_0 \rangle$. At t = 0, it is subjected to an electric field "pulse" of duration τ . The corresponding perturbation can be written:

$$W(t) = \begin{cases} -q \mathscr{E} X & \text{for } 0 \leqslant t \leqslant \tau \\ 0 & \text{for } t < 0 \text{ and } t > \tau \end{cases}$$

 \mathscr{E} is the field amplitude and X is the position observable. Let \mathscr{P}_{0n} be the probability of finding the oscillator in the state $|\varphi_n\rangle$ after the pulse.

- a. Calculate \mathscr{P}_{01} by using first-order time-dependent perturbation theory. How does \mathscr{P}_{01} vary with τ , for fixed ω_0 ?
- b. Show that, to obtain \mathcal{P}_{02} , the time-dependent perturbation theory calculation must be pursued at least to second order. Calculate \mathcal{P}_{02} to this perturbation order.
- c. Give the exact expressions for \mathcal{P}_{01} and \mathcal{P}_{02} in which the translation operator used in complement F_v appears explicitly. By making a limited power series expansion in \mathscr{E} of these expressions, find the results of the preceding questions.
- Consider two spin 1/2's, S_1 and S_2 , coupled by an interaction of the form $a(t)S_1 \cdot S_2$; a(t) is a function of time which approaches zero when |t| approaches infinity, and takes on non-negligible values (on the order of a_0) only inside an interval, whose width is of the order of τ , about t = 0.
- a. At $t=-\infty$, the system is in the state $|+,-\rangle$ (an eigenstate of S_{1z} and S_{2z} with the eigenvalues $+\hbar/2$ and $-\hbar/2$). Calculate, without approximations, the state of the system at $t=+\infty$. Show that the probability $\mathscr{P}(+-\longrightarrow -+)$ of finding, at $t=+\infty$, the system in the state $|-,+\rangle$ depends only on the integral

$$\int_{-\infty}^{+\infty} a(t) dt.$$

- b. Calculate $\mathcal{P}(+-\longrightarrow -+)$ by using first-order time-dependent perturbation theory. Discuss the validity conditions for such an approximation by comparing the results obtained with those of the preceding question.
- c. Now assume that the two spins are also interacting with a static magnetic field ${\bf B}_0$ parallel to Oz. The corresponding Zeeman Hamiltonian can be written:

$$H_0 = - B_0 (\gamma_1 S_{1z} + \gamma_2 S_{2z})$$

where γ_1 and γ_2 are the gyromagnetic ratios of the two spins, assumed to be different.

Assume that $a(t) = a_0 e^{-t^2/\tau^2}$. Calculate $\mathcal{P}(+-\longrightarrow -+)$ by first-order time-dependent perturbation theory. With fixed a_0 and τ , discuss the variation of $\mathcal{P}(+-\longrightarrow -+)$ with respect to B_0 .

3.

Two-photon transitions between non-equidistant levels

Consider an atomic level of angular momentum J=1, subject to static electric and magnetic fields, both parallel to Oz. It can be shown that three non-equidistant energy levels are then obtained. The eigenstates $|\varphi_M\rangle$ of J_z (M=-1,0,+1), of energies E_M correspond to them. We set $E_1-E_0=\hbar\omega_0$, $E_0-E_{-1}=\hbar\omega_0'(\omega_0\neq\omega_0')$.

The atom is also subjected to a radiofrequency field rotating at the angular frequency ω in the xOy plane. The corresponding perturbation W(t) can be written:

$$W(t) = \frac{\omega_1}{2} \left(J_+ e^{-i\omega t} + J_- e^{i\omega t} \right)$$

where ω_1 is a constant proportional to the amplitude of the rotating field.

a. We set (notation identical to that of chapter XIII):

$$|\psi(t)\rangle = \sum_{M=-1}^{+1} b_M(t) e^{-iE_M t/\hbar} |\varphi_M\rangle$$

Write the system of differential equations satisfied by the $b_M(t)$.

- b. Assume that, at time t=0, the system is in the state $| \varphi_{-1} \rangle$. Show that if we want to calculate $b_1(t)$ by time-dependent perturbation theory, the calculation must be pursued to second order. Calculate $b_1(t)$ to this perturbation order.
- c. For fixed t, how does the probability $\mathcal{P}_{-1,+1}(t) = |b_1(t)|^2$ of finding the system in the state $|\varphi_1\rangle$ at time t vary with respect to ω ? Show that a resonance appears, not only for $\omega = \omega_0$ and $\omega = \omega_0'$, but also for $\omega = (\omega_0 + \omega_0')/2$. Give a particle interpretation of this resonance.
- **4.** Returning to exercise 5 of complement H_{XI} and using its notation, assume that the field \mathbf{B}_0 is oscillating at angular frequency ω , and can be written $\mathbf{B}_0(t) = \mathbf{B}_0 \cos \omega t$. Assume that b = 2a and that ω is not equal to any Bohr angular frequency of the system (non-resonant excitation).

Introduce the susceptibility tensor χ , of components $\chi_{ii}(\omega)$, defined by:

$$\langle M_i \rangle (t) = \sum_j \operatorname{Re} \left[\chi_{ij}(\omega) B_{0j} e^{i\omega t} \right]$$

with i, j = x, y, z. Using a method analogous to the one in § 2 of complement A_{XIII} , calculate $\chi_{ij}(\omega)$. Setting $\omega = 0$, find the results of exercise 5 of complement H_{XI} .

If we sum the terms we get

$$\sum R = \frac{8C}{3} \tag{22-103}$$

Similarly

$$\frac{P_{1/2} \to S_{1/2}}{m_j = 1/2 \to m_j = 1/2} |\langle \sqrt{1/3} Y_{10} | \boldsymbol{\epsilon} \cdot \mathbf{r} | Y_{00} \rangle|^2 = 0$$

$$1/2 \to -1/2 |\langle -\sqrt{2/3} Y_{11} | \boldsymbol{\epsilon} \cdot \mathbf{r} | Y_{00} \rangle|^2 = 2C/3$$

$$-1/2 \to 1/2 |\langle \sqrt{2/3} Y_{1,-1} | \boldsymbol{\epsilon} \cdot \mathbf{r} | Y_{00} \rangle|^2 = 2C/3$$

$$-1/2 \to -1/2 |\langle -\sqrt{1/3} Y_{10} | \boldsymbol{\epsilon} \cdot \mathbf{r} | Y_{00} \rangle|^2 = 0$$

Again

$$\sum R = \frac{4C}{3} \tag{22-104}$$

Thus the ratio of the intensities is

$$\frac{R(P_{3/2} \to S_{1/2})}{R(P_{1/2} \to S_{1/2})} = \frac{8C/3}{4C/3} = 2$$
 (22-105)

The reason for *summing* over all the initial states is that when the atom is excited, all the *p*-levels are equally occupied, since their energy difference is so tiny compared to the 2p-1s energy difference. We also sum over all the final states if we perform an experiment that does not discriminate between them, as is the case for a spectroscopic measurement. In our calculation of the $2p \rightarrow 1s$ transition rate, we *averaged* over the initial *m*-states. There we were concerned with the problem of asking: "If we have *N* atoms in the 2p states, how many will decay per second?" The averaging came about because of the fact that under most circumstances, when *N* atoms are excited, about N/3 go into each one of the m=1,0,-1 states. Here, the fact that there are more levels in the $P_{3/2}$ state than there are in the $P_{1/2}$ state is relevant. There will be altogether six levels, (four with j=3/2 and two with j=1/2) and there will be on the average N/6 atoms in each of the states. The fact that there are more atoms in the j=3/2 subset of levels just means that more decay, and that therefore the intensity will be larger.

Problems

 \bigcirc A hydrogen atom is placed in an electric field $\mathbf{E}(t)$ that is uniform and has the time dependence

$$\mathbf{E}(t) = 0 & t < 0 \\ = \mathbf{E}_0 e^{-\gamma t} & t > 0$$

What is the probability that as $t \to \infty$, the hydrogen atom, if initially in the ground state, makes a transition to the 2p state?

(2) Repeat the above calculation with the time dependence of the electric field given by

$$\mathbf{E}(t) = \mathbf{E}_0 e^{-\alpha^2 t^2}$$

and with the condition that the hydrogen atom be in its ground state at $t=-\infty$. [Hint. As a first step, modify Eq. 22-9 appropriately.] Discuss your result when the time-variation of the electric field is extremely slow.

(3) Consider a harmonic oscillator described by

$$H = \frac{1}{2m} p_x^2 + \frac{1}{2} m \omega^2(t) x^2$$

where

$$\omega(t) = \omega_0 + \delta\omega \cos ft$$

and $\delta\omega\ll\omega_0$.

Calculate the probability that a transition occurs from the ground state, as a function of time, given that the system is in the ground state at t = 0. Use perturbation theory. Use the fact that for $n \neq 0$,

$$\langle n \mid x^2 \mid 0 \rangle = \hbar/2\sqrt{2}m\omega$$
 for $n = 2$
= 0 otherwise.

Can you derive this formula using the material from Chapter 7?

4. Suppose a particle of rest mass M decays into two particles of rest mass m_1 and m_2 , respectively. Use the relativistic relation between energy and momentum to compute the density of states ρ that appears in (22-57).

[Hint. There is only one independent momentum, say p, and what is needed is

$$\int \frac{d^3 \mathbf{p}}{(2\pi\hbar)^6} \, \delta \left(E_{\text{initial}} - \sum_{\substack{\text{final} \\ \text{states}}} E \right)$$

5. Consider the above calculation when the decay is of the form

$$A \rightarrow B + C + D$$

with particles C and D massless.

[Hint. There are now two independent momenta.]

6. In this problem the *adiabatic theorem* is to be illustrated. The theorem states that if the Hamiltonian is changed very slowly from H_0 to H, then a system in a given eigenstate of H_0 goes over into the corresponding eigenstate of H,