COMPLEMENT Hy,

Complement Hy,

EXERCISES
r'l’\\ . . - - .
1.) A particle of mass m is placed in an infinite one-dimensional well of width «:
|
Vix)=0 for 0<x<a
Vix) = + everywhere else

It is subject to a perturbation W of the form:

Wi(x) = aw, «i(x - %)

where wy, is a real constant with the dimensions of an energy.

a. Calculate, to first order in w,, the modifications induced by W{(x) in the
energy levels of the particle.

b. Actually, the problem is exactly soluble. Setting k = \/’,2mE,’h2, show that
the possible values of the energy are given by onc of the two equations sin (ka/2) = 0
or tan (ka/2) = — h*k/maw, (as in exercise 2 of complement L,, watch out for the
discontinuity of the derivative of the wave function at x = a/2).

Discuss the results obtained with respect to the sign and size of w,. In the
limit w, —> 0, show that one obtains the results of the preceding question.

2. Consider a particle of mass m placed in an infinite two-dimensional potential
well of width a (¢f. complement Gy;):

Vix,y)=10 if 0€£x<a and 0 y<a
Vix, y) = + oo everywhere else

This particle is also subject 1o a perturbation W described by the potential:

Wix,y)=w, for 0<x< and 0<y<

9
3 |&

Wix, y) =0 everywhere else

a. Calculate, to first order in w,. the perturbed energy of the ground state.

b. Same question for the first excited state. Give the corresponding wave
functions to zeroeth order in w,.
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EXERCISES

b. By finding upper bounds for the terms of the series for £,. give an upper
pound for &, (¢f. §B-2-¢c of chapter XI). Similarly, give a lower bound ¢,,
obtained by retaining only the principal term of the series.

With what accuracy do the two preceding bounds enable us to bracket the
exact value of the shift 4E in the ground state to second order in & 7

¢. We now want to calculate the shift AF by using the variational method.
Choose as a trial function:

where 7 is the variational parameter. Explain this choice of trial functions.

Calculate the mean energy ¢ H )(x) of the ground state to second order in &
[assuming the expansion of { H ) (z)tosecond orderin & to be sufficient ]. Determine
the optimal value of o. Find the result AE_, given by the vaniational method for the
shift in the ground state to second order in &.

By comparing AE  _ with the results of b, evaluate the accuracy of the
variational method applied to this example.

We give the integrals:

2 ""( ) y (r!_\' : (211::.\' 16na 1

= X —=)sm|{—|]sin{—|dx = — -————:
ats \ a a e (1 — 4n7)°
2 [ aY ., [mx a1 1

- X - -—) sin’ ( ~)dx = — (= ——

alg 2 \ a 2\6 =w°

o=

For all the numerical calculations, take n* = 9.87.

~

(i.:' We want to calculate the ground state energy of the hydrogen atom by the

riational method, choosing as trial functions the spherncally symmetrical
functions ¢,(r) whose r-dependence is given by :

"
@,(r) = C(l - -a-c—) forr <o
@, (r) =0 for r > 2
C is a normalization constant and =z is the variational parameter.

a. Calculate the mean value of the kinetic and potential energies of the
electron in the state | @, >. Express the mean value of the kinetic energy in terms
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<
of V. so as to avoid the “delta functions” which appear in A (since Vo i
discontinuous). =

b. Find the optimal value o of z. Comparc o2, with the Bohr radius «,.

c. Compare the approximate value obtained for the ground state energy with
the exact value — £,.

e
' 10.. We intend to apply the varldtmnal method to the determination of the energies
\Q,L«a particle of mass m in an infinite potcmlai well:
Vix)=0 —asxsa
Vix) =cc everywhere else
We begin by approximating, in the interval [ — a, + «], the wave function
of the ground state by the simplest even polynomial which goes to zeroat x = + a:
Ww(x) = a* — x? for —a<x<a
P(x) =10 everywhere else
(a variational family reduced to a single trial function).
Calculate the mean value of the Hamiltonian H in this state. Compare the
result obtained with the truc value.
b. Enlarge the family of trial functions by choosing an even fourth-degree
polynomial which goes to zero at x = + a:
Y.(x) = (a* — x?)(@® — ax?) for —a<x<a

Ylx) =10 cverywhere else

(a variational family depending on the real parameter «).
(x) Show that the mean value of / in the state y (x) is:

K% 33¢® — 420 + 105
< H >(0’_) oAt 2
2ma” 2a° — 122 + 42

() Show that the values of x which minimize or maximize { H ) («)are
given by the foots of the equation :

130 — 98¢ + 21 =0

(7) Show that one of the roots of this equation gives, when substituted
mto { H (), a value of the ground state energy which is much more precise than
the one obtained in a. _ .

(0) What other eigenvalue is approximated when the second root of the
equation obtained in A-f is used? Could this have been expected? Evaluate the
precision of this determinafion.

¢. Explain why the simplest polynomial which permits the approximation
of the first excited state wave function is x(a® — x?).
What approximate value is then obtained for the energy of this state?
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Fig. 16-2. Schemaric picture of potential energy as a function of z with x and y
held fixed. The dotted line represents the Coulomb potential, rhe dashed line the
potential energy due to the external field, and the solid line the rotal potential.

however, they may be stable on a time scale of the age of the universe,* and hence
the observations agree perfectly with what the first few terms of the perturbation

series predict.

Problems

£

i 1. Consider the hydrogen atom, and assume that the proton, instead of
heing\‘%{ point-source of the Coulomb field, 1s a uniformly charged sphere of
radius R, so that the Coulomb potential is now modified to

3¢*

V(r) . 2R:i

1
(R2 — -3 r") r < R(Kag)

= e N r> R

Calculate the energy shift for the » = 1, [ = 0 state, and for the » = 2 states,
caused by this modification, using the wave functions given in (12-25).

i Actually a simple barrier penetration calculation of the type carried out in Chaprer 5
sheows that the time scale is more like 10" [ifetimes of the universe, for fairly reasonable

fields!
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—,

i.&;_[ Calculate the energy shift in the ground state of the one-dimensional
harmonic oscillator, when the perturbation

V= R
is added ro

PE
H= + dmwx?
2m

3. Consider a square well in one dimension. If the edges of the well are
rounded off as shown in the figure, what is the change in the ground state energy?
Tm

Choose your rounding-off parametrization such tharj V(x) dx remains un-

-

e

(4.;The bottom of an infinite well is changed to have the shape
P

changed.

V(x)rzesin%r 0<x<bh

Calculate the energy shifts for all the excited states to first order in e. Note chat
the well originally had V(x) = 0for0 < x < 4, with IV = = elsewhere.
5. Prove the sum rule (Thomas-Reiche-Kuhn sum rule)

2

E (En — E.)| {n|x|a)|?® = ..;;?_

[Hins. (a) Write the commutation relation [p,x] = /i in the form

h fi
Z {(a|p,n)(ﬂ|xla) - (a1x'|::)(ﬂ|p!a)] = {ala) = TI

n

(b) Use the facr that
; o dx $ oo :
(e|pin) = <a|m —dt--lr:> =g {a||H,x]|n)

in working out the problem.]

6. Check the above sum rule for the one-dimensional harmonic oscillator,
with "&"" taken in the ground state.

7. Work out the first order Stark effect in the #» = 3 state of the hydrogen
atom. Do not bother to work out all che integrals.

8. Consider an electron in a state 7 in a hydrogen atom. The atom is placed
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in an external eleccric field €. Estimate the lifecime of the atom, or, equivalently,
the transmission coefhicient through the barrier made up of the Colulomb attrac-
tion to the nucleus. It is enough to consider a one-dimensional model of the
prob!em

19.)Consider a two-dimensional barmonic oscillator described by the
Hamitfonian

1
H = (p' + pf) + 2l + 5%)
m

Generalize the approach of Chapter 7 to obtain solutions of this problem in terms
of raising operators acting on the ground state. Calculate the energy shifts due to
the perturbation

V = 2xxy
in the ground state, and in the degenerate first excited states, using first order

perturbation theory. Can you interpret your result very simply? Solve the problem
exactly, and compare it with a second order perturbation calculation.

[Hints. (a) Examine the symmetries of the unperturbed Hamiltonian. (b) De-
compose the motion into center of mass mouon and internal motion.]
L

References
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generating function (13.10) for the Hermite polynomials. The earlier
discussion (Sec. 13) shows that the states most likely to be excited are
those that have a classical amplitude of oscillation that is of the order
of the displacement a; this is in agreement with the corresponding
classical result. KEquation (35.32) can then be used to show that the
sudden approximation is valid in this case if the time required to move
the equilibrium point is small in comparison with 1/n, times the classical-
oscillator period, where ny is the quantum number of the state most
likely to be excited.

PROBLEMS

1. A one-dimensional harmonic oscillator of charge e is perturbed by an electric field
of strength Ein the positive z direction. Calculate the change in each energy level to
second order in the perturbation, and calculate the induced electric dipole moment.
Show that this problem can be solved exactly, and compare the result with the per-
turbation approximation. IRlepeat the caleulation for a three-dimensional isotropic
oscillator, Show that, if the polarizability « of the oscillator is defined as the ratio of
the induced electric dipole moment, to E, the change in energy is exactly —%aE’.
2. A one-dimensional harmonic oscillator is perturbed by an extra potential energy
bz®. Caleulate the change in each energy level to second order in the perturbation.
3. Find the first-order Stark effect for a hydrogen atom in the state n = 3. Sketch
,_L_l;\e arrangement of the levels and state the quantum numbers associated with each.
(4. | A system that has three unperturbed states can be represented by the perturbed
amiltonian matrix

E, ¢ a
0 E. b
a* b* E;

where E2 > FE,. The quantities @ and b are to be regarded as perturbations that are
of the same order and are small compared with E; — E,. Use the second-order non-
degenerate perturbation theory to calculate the perturbed eigenvalues (is this pro-
cedure correct?).  Then diagonalize the matrix to find the exact eigenvalues.  Finally,
use the second-order degenerate perturbation theory. Compare the three results
obtained.

5. A trial function ¢ differs from an eigenfunction ug by a small amount, so that
¥ = ug + efy, where ug and ¢; are normalized and ¢ <« 1. Show that (H) differs
from E only by a term of order %, and find this term.

6. If the first n — 1 eigenfunctions of a particular hamiltonian are known, write a
formal expression for a variation-method trial funetion that could be used to get an
upper limit on the nth energy level.

7. Find the next terms (of order B~ ¢) in :.h-: expansion of Eq. (32.12). Show that
their diagonal matrix element for the unperturbed ground state vanishes, so that there
is no inverse fourth-power contribution to the van der Waals interaction.

8. Use the first nonvanishing term in the series (32.13) to get a lower limit for
—W(R). Compare with that obtained from the variation caleulation.






