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t .y ! A particle of mass m is placed in an infinite one-dimensional well of width a :

V (x ) = O

V (x ) = + 00

for O!( x !( a

everywhere el se

It is subject to a perturbation W of the form:

where 1110 is a real constant with the dimensions of an energy.

a . Calculate, to first arder in \v a ' the modifieations induced by W (x ) in the

energy levels of the particle.

b . Actually, the problem is exactly soluble. Setting k = -J 2 m E jñ
2

, show that

the possible values of the energy are given by one of the two cquations sin (k a /2 ) = O

or tan (k a /2 ) = - ñ
2
k /m m A ,!0 (as in exercise 2 of complerncnt L

I
, watch out for the

discontinuity of the derivative of the wave function at x = a i2 ) .

Discuss the results obtained with respect to the sign and size of \V o ' In the

limit \v o ---- - O, show that one obtains the results of the preceding question.

2. Consider a particle of mass In placed in an infinite two-dimensional potential

well of width a (e l complement G Il) :

V (x , y ) = O

V (x . y ) = + 00

ir o!( x !( {1 and O!( Y !( a

everywhere el se

This particle is also subject to a perturbation W described by the potential:

W (x , y ) = 11'0 for O!( x !( t¿ and O!( Y !( a

2 2

W (x , y ) = O everywhere else

a . Calculate, to first arder in \v a ' the perturbed energy of the ground state.

b . Same question for the first excited state. Give the corresponding wave

funetions to zeroeth order in w o .
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b .wvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABy finding upper bounds for the terms of the series forONMLKJIHGFEDCBAf :
2

, give an upper

bound Ior E2 (e l §B-2-c of chapter XI). Similarly, give a lower bound 1:2,

obtained by retaining only the principal term of the series.

With what accuracy do the two preceding bounds enable us to bracket the

exact value of the shift L lE in the ground state to second order in g?

c. \Ve now want to calculate the shift L lE by using the variational method.

Choose as a trial functíon:

where « is the variational para meter. Explain this choice of trial íunctions.

Calculate the mean energy < H ) ( IX ) of the ground sta te to second arder in g

[assuming the expansion of < H ) (a ) to second order in 6 to be sufficient]. Determine

the optimal value of a . Find the result ¿ J E var given by the variational method for the

shift in the ground state lo second arder in rff.

By cornparing ¿ J E v a r with the results of b , evaluatc the accuracy of the

variational method applied to this exarnple.

We give the integrals:

2 r a ( a ) . (n x ) . (2 n n x )- x --- - SIll - SlIl ---- dx =

a.o 2 a a

n = 1,2,3, ...

" ) f" ( )2 () '( )~ a _ 2 n x a - 1 1
- x - - :; Si11 - - dx = -- - - -2
a o ~ \ ( l 2 6 t :

2 r a ( a). (n x ) (7 [ x ) , aa . o x -"2 Sl11 -;,-;. COS ---; dx = -2 n

1 6 n a

For all the numerical calculations, take n
2 = 9.87.

~

~ '\

9.) We want to calculate the ground state energy of the hydrogen ato m by the

- ,hiational method, choosing as trial functions the sphericaJly symmetrical

functions (P.(r) whose r-dependencc is given by:

for r ~ o :

for r > 'l.

e is a norrnalization constant and 'l. is the variational parameter.

a . Ca1culate the mean value of the kinetic and potential energies of the

electron in the state I q J . ) . Express the mean vaJue of the kinetic energy in terms
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ofONMLKJIHGFEDCBA';h p , so as to avoid the "delta Iunctions " which appcar inbaZYXWVUTSRQPONMLKJIHGFEDCBAL !(P (since V(P 15

discontinuous ).

b . Find the optimal value a o of C J .. CompareZYXWVUTSRQPONMLKJIHGFEDCBA(Y .o with the Bohr radius a o '

c. Compare the approximate value obtained for the ground state energy with

the exact value - E J '

l1?) We intend to apply the variationalmethod to the determination o f the energies

\Q J /'á particle of mass m l l1 an infinite potential well:

V {x ) = O

V (x ) = c o

-a ~ x ~ a

everywhere else

a . We begin by approximating, in the interval [ - a , + a], the wave function

of the ground state by the sirnplest even polynomial which goes to zero at x = ± a :

t / I { x ) = a
2 - X2 for - a ~ x ~ a

t / I (x ) = O everywhere el se

(a variational family reduced to a single trial function).

Calculate the mean value of the Hamiltonian H in this state. Compare the

result obtained with the true value.

b . Enlarge the family of trial functions by choosing an even fourth-dcgree

polynomial which goes to zero al x = ± a :

t / I~ (x ) = (a 2
- x 2 ) (a 2

- e x x 2
) for - a ~ x ~ a

t/I ~ (x ) = O cverywhere e1se

(a variational family depending on the real parameter a ) .

(a ) Show that the mean value of 1 1 in the state t / la (x ) is :

T J2 ~ ~ 2 47 L 105< H )(e x ) = __ ,) .) (Y . - _ (1 . T

2 m a
2

2 a
2

- 127. + 42

( f3 ) Show that the values of« which minimize or maximize < H ) (e x ) are

given by the foots of the equation :

1 3 a
2

- 9 8 e x + 2 1 = O

(y) Show that one of the roots 0 1 ' this equation gives, when substituted

into < H ) (0:), a value of tbe ground state energy whicb is much more precise tban

the one obtained in a .

(6) What other eigenvalue is approximated when the second root of the

equation obtained in b -~ is used ? Could this have been expected? Evaluate the

precision of this determination.

c. Explain why the simplest polynomial which permits the approximation

of the first excited state wave function is x (a 2
- X 2 ) .

What approximate value is then obtained for the energy 0 1 ' this state?
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V ( .Y ,baZYXWVUTSRQPONMLKJIHGFEDCBAy , z )
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Fig. 16-2, Schematic picrure of poremial entrgy as a funcrion of z wirh x and y

bcld fixed. The dorred line represenrs rhe Coulornb porential, rhe dashed line thc

porenrial energy due to rhe externa! tield, and tbe salid line the total potential.

however, rhey may be stable on a time scale of the age of the universe," and hence

the observarions agrce perfecdy wirh what the firsr few terms of the pcrrurbarion

series predice

Problems

.J' \

\ 1.) Consider rhe hydrogcn arorn, and assume thar the protan, insread of

being"a: point-source of the Coulomb field, is a uniformly charged sphere of

radius R , so rhat rhe Coulomb potencial is now modified to

. 3 e
2

( 1)V e r ) = - o - R 2 - .. . r 2

2 R " .3

r < R (< < a o )

.,
e -

,. > R
, .

Calcularé (he energy shift for the n = 1, 1 O sta te, and for (he n = 2 stares,

caused by chis modificarion, using rhe wave funcrions given in (12-25).

, Acrually a simple barrier penetratio a calculation of th e rype carried o u t in Chaprer :;

shows rhar the rime scale is more like 101 0 0
1 ) liferirnes of rhe universe, for fairly reasonable

fields!
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(2.: Calculate the energy shifr in the ground stare of (he one-dimensional

harmi5riic oseilJator, when the perturbationbaZYXWVUTSRQPONMLKJIHGFEDCBA

V = A X
4

15 added (Q

3. Consider a square well in one dimcnsion. If rhe edgesONMLKJIHGFEDCBAa f thc well are

rounded off as shown in the figure, what is the change in the graund state energy?
rm

Choose your rounding-off pararnctrization such rhat J -r co V (x ) d x rernarns un-

changed.

1 J
. .~\

(4. .The borrorn of au infinite well is changed to have the shape

J
1 fX

V (x ) = E sin - O < x < b
b - -

Calculate the energy shifts for all the excited states to first arder in E. Note that

rhe well originalJy had V (x ) = O for O ~ x ~ b , with V = 00 elsewhere.

5. Prove (he surn ruJe (Thomas-Reiche-Kuhn sum rule)

f¡?
L (E n - E a ) I (n lx la ) i2 = -

n 2 m

[H in t . (a) Write the cornmutation relation [ p ,x ] = ñ ji in the form

L f (a lp ll2 )(n lx la ) - (a lx ln )(n IP la ) l = ~ (a la ) = h

n 1 J t

(b) Use the faet that

I

n i - (a l lH ,x ] ln )
f í

in wocking out rhc problern.]

6. Check the above sum ruJe for rhe one-dimensional harmonie oscillaror,

wirh "a " taken in rhe ground stare.

7. Work Out the firsr arder Srark effeer in rhe 12 = 3 srare of the hydrogen

atom. Do not borher to work out all the integrals.

8. Consider an electrón in a state 1 1 in a hydrogen atorn. The atorn is placed
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in an exrernal electric fieldZYXWVUTSRQPONMLKJIHGFEDCBAG . Estimate the lifetime of the atorn, or, equivalently,

the transmission coefficient through the barrier made up of the Co¡'ulomb attrac-

tion to the nucleus. It is enough to consider a onedimensional model of the

problem.

! 9.) Consider a two-dimensional harmonic oscillator described by the

Hami1t¿nian

Generalize the approach of Chapter 7 to obtain sol utions of this problem in terms

of raising operators acting on the ground stare. Calculate the energy shifts due to

the perturbarionbaZYXWVUTSRQPONMLKJIHGFEDCBA

v =ONMLKJIHGFEDCBA2 X x y

in the ground stare, and in the degenerate first excited states, usíng first order

perturbation theory. Can you interprer your result very simply? Solve the problern

exactly, and compare ir with a second order perturbation calculation.

[H in ts . (a) Examine the symrnetries of rhe unperturbed Harnilronian. (b) De-

compose the rnotion inro center of mass mo~íon and interna] morion.]

References

There are many examples of the application of first-order, perturbarion theory

in the textbook Iiterarure, and the references Jisted at the end of this book may

serve as a source of further examples. For a discussion of the exact calculation

of the Stark effect see

S. Borowitz, F u n d a m en ta ls 0 1 Q u a ll tu m M e c h a n ic s , W. A. Benjamin, Iric., 1967.
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generating function (13.10) for the Hermite polynomials. The earlier

discussion (Sec. 13) shows that the states most likely to be excited are

those that have a classical amplitud e of oscillation that is of the order

of the displacemcntONMLKJIHGFEDCBAa ; this is in agreement with the correspondíng

classical rcsult. Equation (35.32) can then be used to show that the

sud den approximation is valid in this case if the time rcquired tu move

the equilibrium point is small in comparison with l/no times the classical-

oscillator period, wherebaZYXWVUTSRQPONMLKJIHGFEDCBAn o is the quantum number of the state most

likely to be excited.

PROBLEMS

l. A one-dimensional harmonic oscillator 01 charge e is perturbed by an electric field

01 strength E in the positive x direction. Calculate the change in each energy level to

second order in the perturbation, and calculate the induced clectric di poi e momento

Show that this problem can be solved exactly, and compare the result with the per-

turbation approxirnation , Repeat the calculation for a three-dimensional isotropic

oscillator. Show that, ir the poJarizability exof the oscillator is defined as the ratio of

the induced electric dipole moment to E , the change in energy is exactly - t" ,E '.

2. A one-dimensional harmonic oscillator is perturbed by an extra potential energy

b x " . Calculate the change in each energy level to second order in th e perturbation.

3. Find tho first-order Stark effect for a hydrogcn atom in the stat.e n = 3. Sketch

j.~e arrangcment of the lcvcls and st.ate the quantum numbers associatcd with each.
l . - \

~

·.4.¡ A system that has th ree unperturbcd states can be representad by the pcrturbed
./

. amiltonian matrix

where E , > E ,. The quantities a and b are to be regarded as perturbations t.hat are

01 (he same order and are small compared wit.h E , - E ,. Use th e second-order non-

degenerate perturbation theory to calculate the perturbed eigenvalues (is this pro-

ccdure correct?). Then diagonalize the matrix to find the exact eigenvalues. Finally,

use the second-order degenerate perturbation theory. Compare the three results

obt.ained.

5. A trial function f differs from an eigenfunction U E by a srnall amount, so that

f = U E + . 'h , wher e U E and f, are normalized and • «1. Show that (H ) differs

from E only by a term of order ." and find this termo

6. Ir the first n - 1 eigenfunctions 01 a particular hamiltonian are known, write a

formal expression for a variation-rnethod trial function that could be used to get an

upper limit on thc nth energy level.

7. Find the next terms (01 order R - ') in the cxpansion of Eq. (::12.12). Show that

thcir diagonal matrix elcment for the unperturbed ground statc vanishes, so that thcrc

is no inverse fourth-power contribution to the van der Waala interaction.

8. Use the first nonvanishing term in the series (32.13) to get a lower limit for

- W (R ) . Compare with that obtained from th e variation ealculation.




